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Abstract
In static experiments that comprise three conducting spheres suspended by
torsion wires and held at constant electric potential, a net angular displacement
about their centres has been observed. We demonstrate that the observed
rotation is consistent with Coulomb’s law of electrical forces complemented
by Gauss’ surface integrals for electrical potential. Analysis demonstrates that
electrostatic torque is the result of electrostatic forces acting on an asymmetric
distribution of charges residing on the surfaces of the spheres. The asymptotic
value for electrostatic torque is proportional to the inverse of the fourth power of
separation distance with the rotation direction, up or down taken perpendicular
to a plane passing through sphere centres, given explicitly by the equation for
torque. The identification of electrostatic torque prompts further analysis of
models of matter at all size scales where electrostatic forces are the dominant
operative force.

PACS numbers: 41.20.Cv, 03.50.De, 45.50.Jf

1. Introduction

Electrostatic rotation is observed in experiments that comprise three conducting spheres fixed
in space and held at constant electrical potential [1, 2]. We propose that the observed rotation
is likely to be general and apply to systems of all size scales where the electrostatic force is
the dominant operative force [3, 4]. This would include systems ranging in size from nuclear
to macroscopic and be relevant to understanding many of the spectral, magnetic and structural
properties of matter.

The purpose of this contribution is to identify the theoretical basis for the experimentally
observed electrostatic rotation by evaluating the electrostatic force between N conducting
spheres in a three-dimensional setting. It is this last feature that makes the derivation of
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the many-body electrostatic force non-trivial. A way to understand the complexity of the
many-body problem is to consider the action of surface charges under their mutual influence.
In isolation, a charged sphere will have all its charges evenly distributed on its surface. When
a second charged sphere is brought into its vicinity surface charges will instantaneously
redistribute themselves under the action of their mutual influence as a function of separation
distance and polar angles. We note the absence of azimuthal dependence because of the
cylindrical symmetry of the system. Once a third sphere is introduced the redistributed
charges in this new configuration are no longer symmetrically distributed. Indeed, the charge
distribution is now generally asymmetric on the sphere surfaces with both polar and azimuthal
dependence.

It is the introduction of the third sphere that breaks the cylindrical symmetry and the
problem is to determine the location of surface charges on all spheres having polar and
azimuthal dependence. The key advance making an explicit three-dimensional representation
of the charge density distribution possible is a newly derived expansion of the potential
expressed in terms of associated Legendre polynomials with complex exponentials that satisfy
the boundary conditions of N finite spheres [5]. We show theoretically a net electrical torque
on a massive sphere with constant potential that is due to the presence of two or more
spheres having constant potential. Theoretical evidence for electrostatic rotation is discussed
throughout and illustrated by asymptotic analysis.

2. Physical and mathematical considerations

The action of charges under their mutual influence is obtained from Gauss Law that couples
uniquely the applied surface potential and the geometry of the sphere configuration with
the distribution and magnitude of electrical charge on the sphere surfaces [7]. In isolation,
a charged sphere will have all its charges evenly distributed on its surface. Once other
charged spheres are brought into its vicinity surface charges will instantaneously redistribute
themselves under the action of their mutual influence. Clearly, the redistributed charges in
this new sphere configuration are no longer evenly distributed on the surface. If one considers
that the charge distribution will almost always be asymmetrically distributed once the third
sphere is introduced, then the presence of a static moment that leads to rotation should not be
a surprise.

We are interested to calculate the electrostatic force between spheres held at constant
potential. The action-at-a-distance approach provides us with a straightforward way of
calculating the electrostatic force with the fewest possible assumptions and it follows that
the basic experimental force law proposed by Coulomb should be used directly [8]. Hence, we
will not follow convention by defining an auxiliary field in order to avoid defining any vectorial
quantities associated with such a field. Furthermore, we will not anticipate any symmetry of
charges residing on the surfaces of the spheres because the charge distributions are uniquely
obtained using Gauss’ law of potentials.

The derivation of the electrostatic forces proceeds by first deriving the expansion of
the surface potentials for a three-dimensional system comprising N spherical conductors
following the procedures outlined in earlier work [9] using a newfound expansion of the
inverse of the distance that satisfies the boundary conditions for N finite spheres in three-
dimensional space [5]. Next, Coulomb’s law is used to derive the electrostatic force
and electrostatic torque for individual spheres in the three-body system. Rigor, rather
than elegance, characterizes the presentation to invite investigation of our results at all
levels.
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Figure 1. Geometric representation of three conducting spheres. Potentials, charge densities
and the radii on spheres are denoted as V1, σ1, a1, V2, σ2, a2 and V3, σ3, a3, respectively. Note,
azimuth angles for spheres 1 and 2 are equal and denoted as φ while the azimuth angle for sphere 3
is φ13.

2.1. Gauss’ surface potentials

The boundary condition for the potentials on the surface of the spheres is written as [7]

V1 = K

∫
dQ1

R11
+ K

∫
dQ2

R12
+ K

∫
dQ3

R13

V2 = K

∫
dQ1

R21
+ K

∫
dQ2

R22
+ K

∫
dQ3

R23
(1)

V3 = K

∫
dQ1

R31
+ K

∫
dQ2

R32
+ K

∫
dQ3

R33

where K is a constant of proportionality (1/4πε0 and ε0 is permittivity of free space) and the
length quantities Rij are shown in figure 1. Next we write the boundary condition on the
sphere with potential V1 from which the boundary conditions on V2 and V3 will follow by
obvious interchange of symbols, i.e. cyclic permutation (123) → (231) and (231) → (312).
In the spherical coordinate system V1 is

V1 = K

∫ π

0

∫ 2π

0
a2

1 sin θ1 dθ1 dφ1
σ1(θ1, φ1)√

2a2
1 − 2a2

1[cos β cos θ1 + sin β sin θ1 cos(φ − φ1)]

+ K

∫ π

0

∫ 2π

0
a2

2 sin θ2 dθ2 dφ2
σ2(θ2, φ2)√

r2 + a2
2 − 2a2r[cos α cos θ2 + sin α sin θ2 cos(φ − φ2)]
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+ K

∫ π

0

∫ 2π

0
a2

3 sin θ3 dθ3 dφ3
σ3(θ3, φ3)√

r2
3 + a2

3 − 2a3r3[cos δ cos θ3 + sin δ sin θ3 cos(φ′ − φ3)]

(2)

where

r =
√

a2
1 + h12

2 − 2a1h12 cos β cos α = h12 − a1 cos β√
a2

1 + h12
2 − 2a1h12 cos β

r3 =
√

a2
1 + h2

13 − 2a1h13 cos β ′
13 cos δ = h13 − a1cos β ′

13√
a2

1 + h2
13 − 2a1h13cos β ′

13

and

cos β ′
13 = cos λ13 cos β + sin λ13 sin β cos

(
φ − φλ13

)
which must hold for 0 < β < π and 0 � φ � 2π . We note that with the introduction of
the third sphere the system is no longer cylindrically symmetric and requires consideration
of the azimuthal dependence. The charge density σ must therefore be expressed in terms of
both the polar angle θ and the azimuth angle φ. Without loss of generality we have set the
azimuth angle of sphere 2 to be the same as the azimuth angle of sphere 1. However, for the
third sphere the trigonometric relation is given by sin β

sin(φλ13−φ ′) = sin β ′
13

sin(φ−φλ13)
, which is a known

relation for oblique spherical triangles [10].
It is convenient to introduce Legendre polynomials in order to express the electrostatic

potential in terms of spherical harmonics. The identities used to obtain V1 in equation (8)
from equation (2), beginning with the first term are

1√
2a2

1 − 2a2
1[cos β cos θ1 + sin β sin θ1 cos(φ − φ1)]

= 1

a1

∞∑

=0


∑
m=−


(
 − m)!

(
 + m)!
Pm


 (cos β)Pm

 (cos θ1) eim(φ−φ1) (3)

where P 0

 (x) are the Legendre polynomials and Pk


 (x) are associated Legendre polynomials
in the interval −1 � x � 1, and

P
(x) =

∑

j=0

(−1)j
(
 + j)!

2j (j !)2(
 − j)!
(1 − x)j

P k

 (x) = (−1)k(1 − x2)

k
2

dk

dxk
P
(x)

=

∑

j=0

(−1)j
(
 + j)!

2j j !(
 − j)!(j − k)!
(1 + x)

k
2 (1 − x)j− k

2 |k| � 


P k

 (x) = 0 |k| > 


Pk

 (x) = (−1)k

(
 + k)!

(
 − k)!
P−k


 (x)∫ 1

−1
Pk


 (x)P−k

′ (x) dx = (−1)k

2

2
 + 1
δ
,
′

∞∑

=0

2
 + 1

2
P
(x)P
(x

′) = δ(x − x ′)
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where δ
,
′ is the Kronecker delta and δ(x) is the Dirac delta function. The last identity is
known to hold to unprecedented precision through Fredholm’s formulation of the boundary
conditions, which is independent of singular Kernel’s appearing in the force and potential
formulations developed here.

For rewriting the second term in equation (2) we use

1√
r2 + a2

2 − 2ra2[cos α cos θ2 + sin α sin θ2 cos(φ − φ2)]

=
∞∑

j=0

j∑
m=−j

(j − m)!

(j + m)!

a
j

2

rj+1
Pm

j (cos α)Pm
j (cos θ2) eim(φ−φ2)

=
∞∑

j=0

j∑
m=−j

(j − m)!

(j + m)!

∞∑

=0

(
 + j)!

(
 + m)!(j − m)!

× a
j

2a

1

h12

+j+1 Pm


 (cos β)Pm
j (cos θ2) eim(φ−φ2) (4)

where in the last equality we have substituted for the term Pj (cosα)

rj+1 the identity given by

Pj (cos α)

rj+1
= Pj (cos α)(

a2
1 + h12

2 − 2a1h12 cos β
) (j+1)

2

= (−1)j

j !

∂j

∂h12
j

1√
a2

1 + h12
2 − 2a1h12 cos β

= (−1)j

j !

∂j

∂h12
j

∞∑

=0

P
(cos β)
a


1

h12

+1 =

∞∑

=0

(
 + j)!


!j !

a

1

h12

+j+1 P
(cos β) (5)

that follows by direct differentiation and substitution for the geometrical relation h12 −
r cos α = a1 cos β from which

Pm
j (cos α)

rj+1
= (−1)m+j

(j − m)!

∂j−m

∂h
j−m

12

(
1

hm
12

(sin β)m
(

1

sin β

∂

∂β

)m)
1√

a2
1 + h12

2 − 2a1h12 cos β

=
∞∑


=0

(
 + j)!

(
 + m)!(j − m)!

a

1

h

+j+1
12

Pm

 (cos β) (6)

which again may be verified by direct differentiation.
A similar procedure yields the third term:

1√
r2

3 + a2
3 − 2a3r3[cos δ cos θ3 + sin δ sin θ3 cos(φ′ − φ3)]

=
∞∑

j=0

j∑
m=−j

(j − m)!

(j + m)!

∞∑

=0

(
 + j)!

(
 + m)!(j − m)!

× a
j

3a

1

h13

+j+1 Pm


 (cos β ′
13)P

m
j (cos θ3) eim(φ ′−φ3). (7)
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Combining results the boundary condition for the surface potential on sphere 1 now reads

V1 =
∞∑


=0


∑
m=−



Pm


 (cos β)
1

a
+1
1

eimφA1

,m+ Pm


 (cos β) eimφ

∞∑
j=0

(
 + j)!

(
 + m)!(j − m)!

a

1

h
j+
+1
12

A2
j,m

+ Pm

 (cos β ′

13) eimφ ′
∞∑

j=0

(
 + j)!

(
 + m)!(j − m)!

a

1

h
j+
+1
13

A3
j,m


 (8)

which is the result sought after. Experimentally, the potentials on the conducting spheres are
known and to complete the evaluation the coefficients in equation (8):

A1
j,m = Ka

j+2
1

(j − m)!

(j + m)!

∫ π

0

∫ 2π

0
sin θ1 dθ1 dφ1σ1(θ1, φ1)P

m
j (cos θ1) e−imφ1

A2
j,m = Ka

j+2
2

(j − m)!

(j + m)!

∫ π

0

∫ 2π

0
sin θ2 dθ2 dφ2σ2(θ2, φ2)P

m
j (cos θ2) e−imφ2 (9)

A3
j,m = Ka

j+2
3

(j − m)!

(j + m)!

∫ π

0

∫ 2π

0
sin θ3 dθ3 dφ3σ3(θ3, φ3)P

m
j (cos θ3) e−imφ3

must be evaluated in order to obtain the sought after charge densities σn(θn, φn). With three
(or more) spheres present the sphere arrangement is generally not symmetric. This leads to the
third term in equation (8) that is the associated Legendre polynomials Pm

l (cos β ′
13) coupled

to complex exponentials eimφ ′
. In fact, it is at this juncture that previous attempts towards an

explicit expression for the electrostatic force in a many-body system of finite spheres have
faltered and will be discussed in some detail in the following section.

2.2. Expansion of potentials in N body system

In the presence of the third sphere the charge density distribution is in general asymmetric and
the expansion of the potential is no longer obvious. To proceed, equation (8) is multiplied
by Pk

l (cos β) eikφ d cos β dφ and integrated using two identities. The first identity is obtained
using the orthogonality relations of Legendre polynomials and reads∫ 1

−1

∫ 2π

0
d cos β dφ eikφP k


′(cos β)


∑
m=−


eimφPm

 (cos β)A
,m = 4π

2
′ + 1
δ
,
′(−1)kA
′,−k.

The second identity is the recently derived sum rule for the associated Legendre polynomial
with complex exponentials [5]. This identity makes it possible to give the rotation required
to express Pm


 (cos β ′
13) eimφ ′

in terms of β and φ (see figure 1) and thus makes it possible to
expand the potential for N finite spheres in three-dimensional space. This identity is∫ 1

−1

∫ 2π

0
d cos β dφ eikφP k


′(cos β)


∑
m=−


eimφ ′
Pm


 (cos β ′
13)Bj,m

= 4π

2
′ + 1
δ
,
′


∑
m=−


Bj,m ei(m+k)φλ13 (−1)m+
+kgm

,k(−cos λ13) k � 0 (10)

where

gm

,k(x) =


∑
n=0

(−1)n(
 + n)!

2n(n − m)!(
 − n)!(n − k)!
(1 + x)

k+m
2 (1 − x)n− k+m

2

for |k| � 
 |m| � 
.
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After making the appropriate substitutions the boundary condition on sphere 1 can now
be written as

V1δk,0 δ
,0 = (−1)k
1

a
+1
1

A1

,−k + (−1)k

∞∑
j=0

(
 + j)!

(
 − k)!(j + k)!

a

1

h
j+
+1
12

A2
j,−k

+
∞∑

j=0

(
 + j)!
a


1

h
j+
+1
13


∑
m=−


gm

,k(−cos λ13)

(
 + m)!(j − m)!
(−1)m+
+k ei(m+k)φλ13 A3

j,m

for k � 0. (11)

Further, generalizing equation (11) for a system containing N spheres the boundary
condition on sphere 1 can be written as

V1δk,0 δ
,0 = (−1)k
1

a
+1
1

A1

,−k + (−1)k

∞∑
j=0

(
 + j)!

(
 − k)!(j + k)!

a

1

h
j+
+1
12

A2
j,−k

×
N∑

n=3

∞∑
j=0

(
 + j)!
a


1

h
j+
+1
1n


∑
m=−


gm

,k(−cos λ1n)

(
 + m)!(j − m)!
(−1)m+
+k ei(m+k)φλ1n An

j,m

for k � 0. (12)

The complex conjugate of above equation is equivalent to the case of k � 0.
Once the above equation is written in full form then the boundary conditions for

V2, V3, . . . , VN can be obtained by cyclic permutation. The generalized expression for the
coefficients in equation (12) for N spheres reads

An
j,m = Kaj

n(−1)m
∫

dQnP
−m
j (cos θn) e−imφn

= Kaj
n(−1)m

∫ π

0

∫ 2π

0
sin θn dθn dφna

2
nσn(θn, φn)P

−m
j (cos θn) e−imφn |m| � j

(13)

from which the charge densities σn(θn, φn) are obtained.
It was the newfound sum rule for the associated Legendre polynomial with complex

exponentials which made possible the above simple equation for the boundary conditions. The
important result is that the expression for constant potential boundary condition equation (12)
accounts for all contributions of charge, both polar and azimuthal, stemming from all surfaces
without assuming symmetry.

2.3. Coulomb force

The force on sphere 1 due to charges on spheres 2 and 3 is

�F 1 = �F 21 + �F 31 = − �F 12 − �F 13. (14)

Taking equation (14) to be valid only at the surface of the sphere, noting that the sharp
discontinuity at the sphere surface renders the differentiation of the potential to be ill-defined,
we use Coulomb’s law directly to avoid making any assumption of auxiliary fields:

�F 1 = K

∫
dQ1 dQ2

�R12

R3
12

+ K

∫
dQ1 dQ3

�R13

R3
13

= K

∫
dQ1 dQ2

(
�∇21

1

R12

)
+ K

∫
dQ1 dQ3

(
�∇31

1

R13

)
(15)
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where the integration is over spheres
∫

dQ1dQ2 = ∫ π

0

∫ 2π

0 a2
1 sin θ1 dθ1 dφ1

∫ π

0

∫ 2π

0 a2
2 sin θ2

dθ2 dφ2 and the gradients �∇21 and �∇31 are taken from the translated points which is at the
centre of the spheres 2 and 3, respectively.

It is convenient to proceed by first examining the force on sphere 1 due to sphere 2 as the
contributions from sphere 3 (and others) are readily obtained by interchange of indices. We
begin by writing the gradient �∇21 in spherical polar coordinates:

�∇21 = r̂
∂

∂r
+ α̂

1

r

∂

∂α
+ φ̂

1

r sin α

∂

∂φ
(16)

from which we can express ∂/∂x, ∂/∂y, ∂/∂z, also in spherical coordinates, by equating ∇xyz

with ∇rθφ:

∂

∂x
= sin θ1 cos φ1

∂

∂a1
+

cos θ1 cos φ1

a1

∂

∂θ1
− sin φ1

a1 sin θ1

∂

∂φ1

∂

∂y
= sin θ1 sin φ1

∂

∂a1
+

cos θ1 sin φ1

a1

∂

∂θ1
+

cos φ1

a1 sin θ1

∂

∂φ1

∂

∂z
= cos θ1

∂

∂a1
− sin θ1

a1

∂

∂θ1

where the radius of sphere 1 is �a1 = x̂ sin θ1 cos φ1 + ŷ sin θ1 sin φ1 + ẑ cos θ1. To facilitate the
derivation we introduce the operators p+ and p− defined according to

p+ = px + ipy p− = px − ipy

for �p = �∇12 = − �∇21 which allows the gradient �∇12 to be expressed as

�∇12 = 1

2
(x̂ − iŷ) eiφ1

(
sin θ1

∂

∂a1
+

cos θ1

a1

∂

∂θ1
+ i

1

a1 sin θ1

∂

∂φ1

)

+
1

2
(x̂ + iŷ) eiφ1

(
sin θ1

∂

∂a1
+

cos θ1

a1

∂

∂θ1
− i

1

a1 sin θ1

∂

∂φ1

)

+ ẑ

(
cos θ1

∂

∂a1
− sin θ1

a1

∂

∂θ1

)
(17)

where we identify

p+ = eiφ1

(
sin θ1

∂

∂a1
+

cos θ1

a1

∂

∂θ1
+ i

1

a1 sin θ1

∂

∂φ1

)

p− = e−iφ1

(
sin θ1

∂

∂a1
+

cos θ1

a1

∂

∂θ1
− i

1

a1 sin θ1

∂

∂φ1

)

pz =
(

cos θ1
∂

∂a1
− sin θ1

a1

∂

∂θ1

)
and

�∇12 = 1
2 (x̂ − iŷ)p+ + 1

2 (x̂ + iŷ)p− + ẑpz. (18)

Similarly, given the definition of the operator Coulomb’s law for the electrostatic force
on sphere 1 due to sphere 2 can be written as

�F 12 = K

2
(x̂ − iŷ)

∫
dQ1 dQ2

(
p+

1

R12

)
+

K

2
(x̂ + iŷ)

∫
dQ1 dQ2

(
p−

1

R12

)

+ Kẑ

∫
dQ1 dQ2

(
pz

1

R12

)
. (19)
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Substitution of the inverse of the separation distance 1/R12 into the first term of equation (19)
yields∫

dQ1 dQ2 p+
1

R12
=

∫
dQ1

∞∑
j=0

j∑
m=−j

∞∑

=0

(
 + j)!

(
 + m)!(j − m)!

A2
j,m

Kh12

+j+1 p+a



1P

m

 (cos θ1) eimφ1 .

(20)

Next, we will use the following recursion relations for associated Legendre polynomials:

p+a


1 eimφ1Pm


 (cos θ1) = a
−1
1 ei(m+1)φ1Pm+1


−1 (cos θ1)

pza


1 eimφ1Pm


 (cos θ1) = a
−1
1 (
 + m) eimφ1Pm


−1(cos θ1)

and substitute back into equation (20) to obtain∫
dQ1 dQ2 p+

1

R12

= 1

a1

∫
dQ1

∞∑
j=0

j∑
m=−j

∞∑

=1

(
 + j)!

(
 + m)!(j − m)!

A2
j,ma


1

Kh12

+j+1 Pm+1


−1 (cos θ1) ei(m+1)φ1

=
∫

dQ1

∞∑
j=0

j∑
m=−j

∞∑

=1

(
 + j)!

(
 − m)!(j + m)!

A2
j,−ma
−1

1

Kh12

+j+1 P−m+1


−1 (cos θ1) e−i(m−1)φ1

(21)

that is∫
dQ1 dQ2 p+

1

R12
=

∞∑
j=0

j∑
m=−j

∞∑

=1

(−1)m+1 (
 + j)!

(
 − m)!(j + m)!

A2
j,−mA1


−1,m−1

K2h12

+j+1 . (22)

Similarly, the second term reads∫
dQ1 dQ2 p−

1

R12
=

∞∑
j=0

j∑
m=−j

∞∑

=1

(−1)m+1 (
 + j)!

(
 − m)!(j + m)!

A2∗
j,−mA1∗


−1,m−1

K2h12

+j+1 (23)

where ∗ is used to define complex conjugation. And, the third term is written as∫
dQ1 dQ2 pz

1

R12
=

∞∑
j=0

j∑
m=−j

∞∑

=1

(−1)m
(
 − m)(
 + j)!

(
 − m)!(j + m)!

A2
j,−mA1


−1,m

K2h12

+j+1 . (24)

Substitution of equations (22)–(24) into equation (19) yields the sought after expression for
the Coulomb force relative to the centre of sphere 1 due to sphere 2:

�F 21 = − �F 12 = −x̂

∞∑
j=0

j∑
m=−j

∞∑

=1

(−1)m+1 (
 + j)!

(
 − m)!(j + m)!

A2
j,−mA1


−1,m−1

Kh12

+j+1

− ẑ

∞∑
j=0

j∑
m=−j

∞∑

=1

(−1)m
(
 − m)(
 + j)!

(
 − m)!(j + m)!

A2
j,−mA1


−1,m

Kh12

+j+1 . (25)

It follows that the force on sphere 1 due to charges on sphere 3 is obtained from the above
equations by obvious interchange of indices 1–3.

The net force in a closed system of i spheres follows by vector addition of all forces acting
in the system such that:

�F = �F 1 + �F 2 + �F 3 + · · · + �F i = 0 (26)
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in accordance with the conservation laws. Experimentally, the constant potential limit
describes the physical situation of spheres connected to a voltage power supply. It should
thus be possible to verify the electrostatic force experimentally for selected many-body
configurations using methods developed in previous work [11].

2.4. Coulomb torque

The Coulomb torque is evaluated in an analogous fashion. The torque relative to the centre of
sphere 1 due to spheres 2 and 3 follow from the expression for the Coulomb force:

�T 1 = − �T 12 − �T 13. (27)

Again, we will use Coulomb’s law directly to write

�T1 = K

∫
dQ1 dQ2

(
�a1 ×

�R12

R3
12

)
+ K

∫
dQ1 dQ3

(
�a1 ×

�R13

R3
13

)

= K

∫
dQ1 dQ2

(
�a1 × �∇21

1

R12

)
+ K

∫
dQ1 dQ3

(
�a1 × �∇31

1

R13

)
(28)

where a1,
∫

dQ1 dQ2 and ∇21 and ∇31 have already been defined. For deriving the expression
for Coulomb torque we introduce the operators L+ and L− defined according to

L+ = Lx + iLy L− = Lx − idLy

for �L(θ1, φ1) = a1 × �p where �p = �∇12, which allows the operator �L(θ1, φ1) to be expressed
as

�L(θ1, φ1) = 1

2
(ŷ + ix̂) eiφ1

(
∂

∂θ1
+ i cot θ1

∂

∂φ1

)

+
1

2
(ŷ − ix̂) e−iφ1

(
∂

∂θ1
− i cot θ1

∂

∂φ1

)
+ ẑ

∂

∂φ1
(29)

where we identify

L+ = eiφ1

(
∂

∂θ1
+ i cot θ1

∂

∂φ1

)
L− = e−iφ1

(
∂

∂θ1
− i cot θ1

∂

∂φ1

)
Lz = ∂

∂φ1

(30)

and we obtain
�L(θ1, φ1) = 1

2 (ŷ + ix̂)L+ + 1
2 (ŷ − ix̂)L− + ẑLz. (31)

Given the definition of the operator �L the expression for Coulomb torque on sphere 1 due to
sphere 2 can be written as

�T 12 = K

2
(ŷ + ix̂)

∫
dQ1 dQ2 L+

1

R12
+

K

2
(ŷ − ix̂)

∫
dQ1 dQ2 L−

1

R12

+ Kẑ

∫
dQ1 dQ2 Lz

1

R12
. (32)

We begin by evaluating the first term of the above expression by substituting the expression
for the inverse of the separation distance 1/R12 which yields∫

dQ1 dQ2 L+
1

R12
=

∫
dQ1

∞∑
j=0

j∑
m=−j

∞∑

=0

(
 + j)!

(
 + m)!(j − m)!

× A2
j,m

Kh12

+j+1 L+a



1P

m

 (cos θ1) eimφ1 . (33)
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Again, we will use the same recursion relations for associated Legendre polynomials as before
but now written in terms of the operator L:

L+a


1 eimφ1Pm


 (cos θ1) = a

1 ei(m+1)φ1Pm+1


 (cos θ1)

Lza


1 eimφ1Pm


 (cos θ1) = a

1(im) eimφ1Pm


 (cos θ1)

and substituting back into equation (33) to obtain∫
dQ1 dQ2 L+

1

R12

=
∫

dQ1

∞∑
j=0

j∑
m=−j

∞∑

=1

(
 + j)!

(
 + m)!(j − m)!

A2
j,ma


1

Kh12

+j+1 Pm+1


 (cos θ1) ei(m+1)φ1

=
∫

dQ1

∞∑
j=0

j∑
m=−j

∞∑

=1

(
 + j)!

(
 − m)!(j + m)!

A2
j,−ma


1

Kh12

+j+1 P−m+1


 (cos θ1) e−i(m−1)φ1

(34)

that is

∫
dQ1 dQ2 L+

1

R12
=

∞∑
j=0

j∑
m=−j

∞∑

=1

(−1)m+1 (
 + j)!

(
 − m)!(j + m)!

A2
j,−mA1


,m−1

K2h12

+j+1 . (35)

Similarly, the second term reads (taking the complex conjugate of the above)

∫
dQ1 dQ2 L−

1

R12
=

∞∑
j=0

j∑
m=−j

∞∑

=1

(−1)m+1 (
 + j)!

(
 − m)!(j + m)!

A∗2
j,−mA∗1


,m−1

K2h12

+j+1 (36)

and, the third term is

∫
dQ1 dQ2 Lz(φ1)

1

R12
= i

∞∑
j=0

j∑
m=−j

∞∑

=1

m(−1)m
(
 + j)!

(
 − m)!(j + m)!

A2
j,−mA1


,m

K2h12

+j+1 . (37)

Combining terms yields the sought after expression for the Coulomb torque relative to the
centre of sphere 1 due to sphere 2:

− �T 12 = −ŷ
1

K

∞∑
j=0

j∑
m=−j

∞∑

=1

(−1)m+1 (
 + j)!

(
 − m)!(j + m)!

A1

,m−1A

2
j,−m

Kh12

+j+1 . (38)

It follows that the torque on sphere 1 due to charges on sphere 3 is obtained from the above
equations by obvious interchange of indices 1, 2 and 3 observing the geometric relations of
oblique spherical triangles. The net torque in a closed system of i spheres follows by vector
addition of all torques acting in the system such that

�T 1

a1
+

�T 2

a2
+

�T 3

a3
= 0 (39)

in accordance with the conservation laws.
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Figure 2. Asymptotic values for electrostatic torque for three spheres of equal size and surface
potential. The rotation direction is given explicitly by the equation for torque. The direction is
either positive or negative taken perpendicular to the plane passing through the sphere centres.
Rotation direction for sphere 2 is positive when sphere 3 is positioned such that 60◦ < λ13 < 180◦
and negative when positioned such that 180◦ < λ13 < 300◦.

The asymptotic expressions of the Coulomb torque for three spheres are

�T 1∞ = −ŷ
1

K

(
A1

1,1A
2
0,0 − A1

0,0A
2
1,1

h2
12

− A1
1,1A

3
0,0 − A1

0,0A
3
1,1

h2
13

)

�T 2∞ = −ŷ
1

K

(
A2

1,1A
3
0,0 − A2

0,0A
3
1,1

h2
23

− A2
1,1A

1
0,0 − A2

0,0A
1
1,1

h2
12

)
(40)

�T 3∞ = −ŷ
1

K

(
A3

1,1A
1
0,0 − A3

0,0A
1
1,1

h2
13

− A3
1,1A

1
0,0 − A3

0,0A
2
1,1

h2
23

)

where λ13 + λ21 + λ32 = π and sin λ13
h23

= sin λ21
h31

= sin λ32
h12

, and where the first three coefficients
An

j,m in equation (38) are obtained by cyclic permutation:

A1
0,0 = a1V1 = KQ1∞ A2

0,0 = a2V2 = KQ2∞ A3
0,0 = a3V3 = KQ3∞

A1
1,0 = −a1 cos2 λ13

2

(
V2a2

a2
1

h2
12

+ V3a3
a2

1

h2
13

)
A2

1,0 = −a2 cos2 λ21

2

(
V3a3

a2
2

h2
23

+ V1a1
a2

2

h2
21

)

A3
1,0 = −a3 cos2 λ32

2

(
V1a1

a2
3

h2
31

+ V2a2
a2

3

h2
32

)
A1

1,−1 = a1
sin λ13

2

(
V2a2

a2
1

h2
12

+ V3a3
a2

1

h2
13

)

A2
1,−1 = a2

sin λ21

2

(
V3a3

a2
2

h2
23

+ V1a1
a2

2

h2
21

)
A3

1,−1 = a3
sin λ32

2

(
V1a1

a2
3

h2
31

+ V2a2
a2

3

h2
32

)
.

The asymptotic value of the Coulomb torque is proportional to the inverse of the fourth
power of separation distance and is plotted in figure 2 for three spheres with equal radii
a1 = a2 = a3 = a. The spheres are located such that spheres 2 and 3 lie on the perimeter of a
circle with its centre at sphere 1.

We find that torque is generally present for all sphere arrangements except when the centres
of spheres align along a common axis (cylindrical symmetry—no azimuthal dependence) and
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when three spheres are arranged in an equilateral triangle: a prediction that is in agreement with
experimental observations [1–4]. The rotation direction is given explicitly by the equation
for torque and is either up or down taken perpendicular to the plane passing through the
sphere centres. In figure 2 we find that the spin direction for sphere 2 is positive when
60◦ < λ13 < 180◦ but negative for 180◦ < λ13 < 300◦. For sphere 3 the spin direction is
opposite to that of sphere 2.

3. Discussion

We have shown the existence of electrostatic torque for conducting spheres to be a natural
consequence of electrical action-at-a-distance force. Theory predicts that electrostatic rotation
is the direct consequence of the Coulomb force acting on an asymmetric distribution of charges
residing on the surface of the conductors. The mathematical structure of electrostatic spin is
shown to be the consequence of the expansion of the potentials for N spheres which forces the
dependence of both polar and azimuthal contributions to the surface charge distribution. It is
the presence of the third body that forces rotation. The identification of electrostatic rotation
was prompted by experimental observations and confirmed theoretically from fundamental
laws of electrostatics notwithstanding the postulated direction of an auxiliary electric
field [12].

The first half of the nineteenth century was marked by the discovery of a variety of
new phenomena in electricity and magnetism and the general task to which scientists then
addressed themselves was to develop a unified theory of electromagnetism [13]. At the time,
the theory of continuum mechanics and associated differential equations were available but the
motivation for applying these to electricity and magnetism was not yet apparent. Thomson’s
initial work in this area was in electrostatics and was guided by certain analogies between
electrostatics as treated by Laplace and Poisson and heatflow as treated by Fourier, which
resulted in a mathematical approach to electrostatics that emphasized the spatial distribution
and geometrical relationships of electrical forces [13, 14]. Even though the concept of an
electrostatic potential was justified for integrating magnetic and electrical phenomena the
experimental verification of postulated electrical quantities including the electrostatic force
received much less attention [15, 16]. Indeed, the primary motivation at the time was the
determination of the ratio of the electromagnetic to the electrostatic charge unit, an essential
quantity for predicting the signalling performance of long cables, a problem of great practical
importance at the time [17]. In fact, it is plausible that the success of the new field theory [18]
for solving important technological problems at the time made it less important to evaluate its
limitations.

The identification of electrostatic rotation was prompted by experimental observations and
confirmed theoretically from fundamental laws of electrostatics notwithstanding the postulated
direction of an auxiliary electric field [12]. It should be noted that the findings presented here
do not conflict with previous work. Theoretical evidence for Coulomb torque was obtained
from the classical definition of the static moment of force by considering the interaction
of three charged spheres arranged in different configurations that yield either symmetric or
asymmetric surface charge distributions. Previously, only cylindrically symmetric interactions
that comprise two surfaces, spheres [19] or discs [17], have been investigated experimentally
and theoretically. As it turns out either method of analysis, field theory or the method described
here (see also [9]), yields the same result for two interacting objects in the absence of azimuthal
dependence. Once, the third sphere is introduced the electrical charges instantaneously
redistribute themselves on the sphere surfaces under the action of their mutual influence.
Generally, the electrical charges are asymmetrically distributed on the sphere surfaces and
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both polar and azimuthal dependence must be accounted for. We find that electrostatic
rotation is the direct consequence of the Coulomb force acting on an asymmetric distribution
of surface charges. It follows that if the direction of the electric field is taken to be normal to
the equipotential surface this introduces a restrictive assumption a priori that does not permit
electrostatic rotation contrary to experimental observations [1–4] and theoretical analysis
presented here.

4. Conclusion

The experimental observation of a rotational force in an electrostatic system of three spherical
conductors testifies to the existence of a Coulomb torque. The experimentally observed
rotation cannot be explained using the conventional assumption of an electric field directed
outward normal to an equipotential surface—an assumption that automatically precludes
tangential forces. However, the observed rotation is correctly predicted by an explicit
solution to the electrostatic problem given Gauss’ definition of the boundary conditions on the
spheres and Coulomb’s law of the electrostatic force without invoking any approximations or
simplifications with respect to vectorial quantities of an auxiliary electric field. The discovery
of electrostatic rotation invites investigation of systems of all size-scales where the electrostatic
force is the dominant operative force. This would include materials at the atomic and molecular
scales and be relevant to understanding their spectral and structural properties.
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